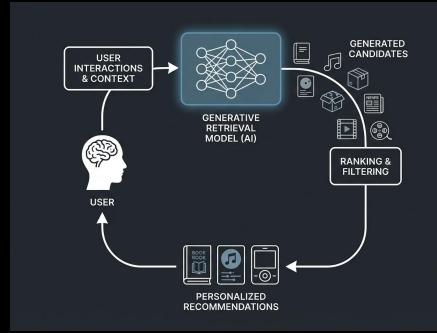


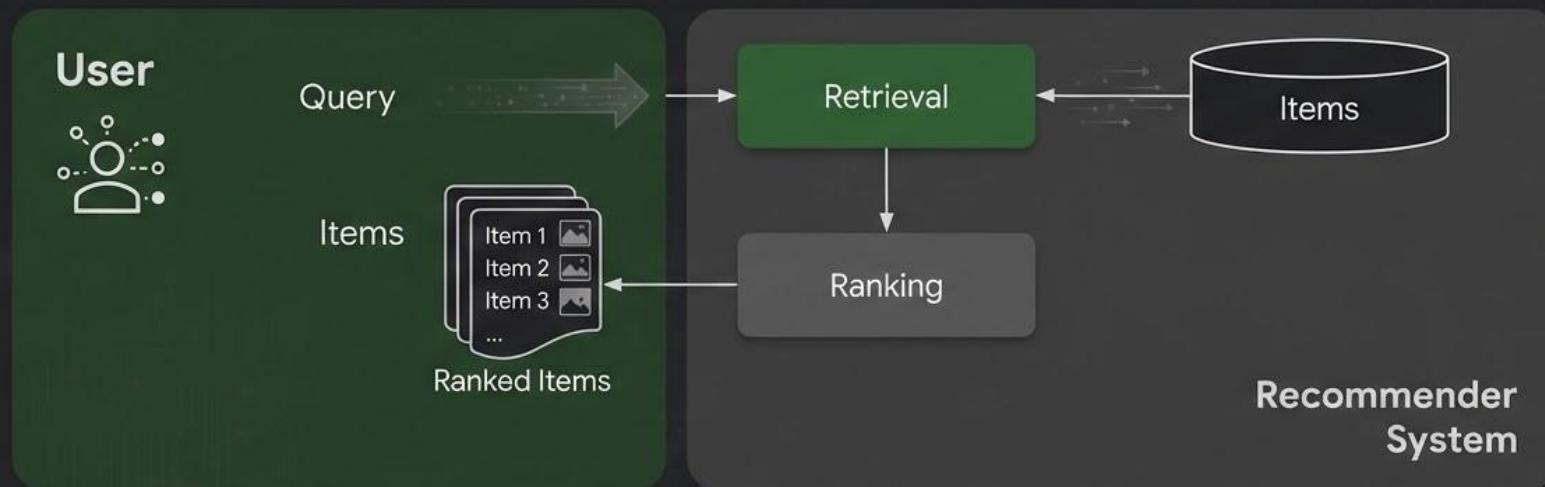
Personalized Recommendations in the era of GenAI



Nikhil Mehta | nikhilmehta@
Staff Research Scientist, Google DeepMind
Presenting work done in collaboration with GDM/YouTube.

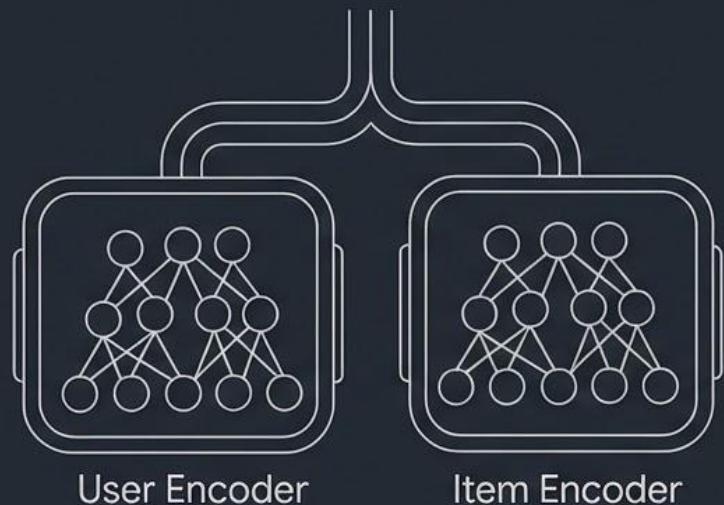
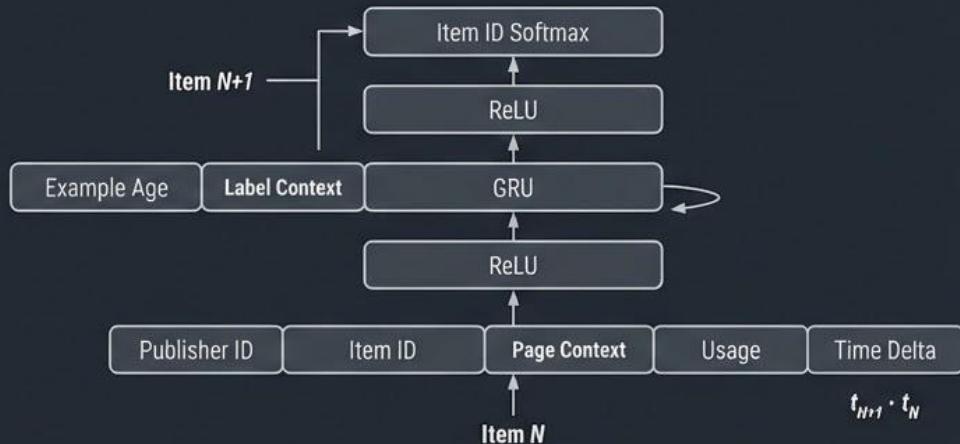
2026-01-23

Typical Recommendation Pipeline

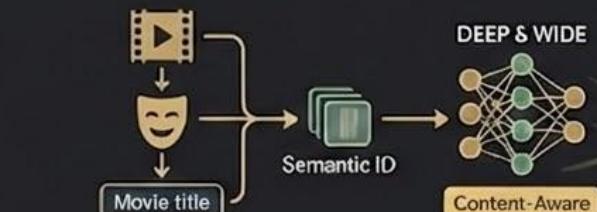


Query features: User + Contextual features.

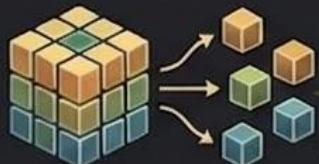
Traditional Retrieval Models...



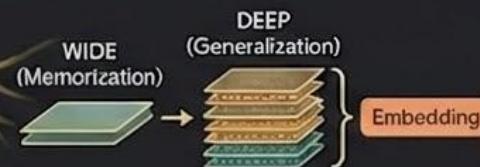
Evolution of Recommendation Models:



Semantic IDs & Deep Networks
Hierarchical Representation
Key: Content-Aware Input



Matrix Factorization
Traditional ML: Latent Factors
Key: User-Item Matrix Input



Wide & Deep Networks
Memorization + Generalization
Key: Large Embedding Models

Traditional ML Era

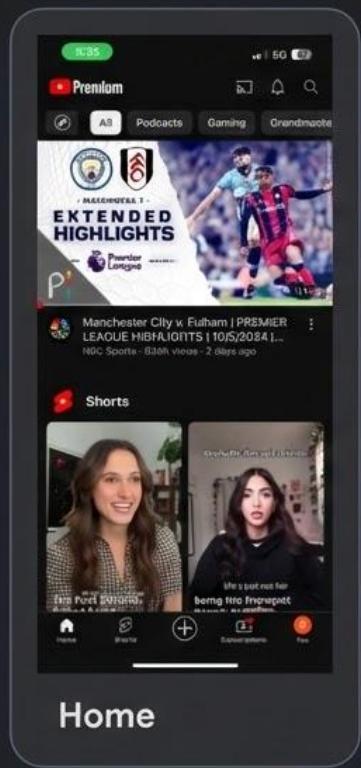
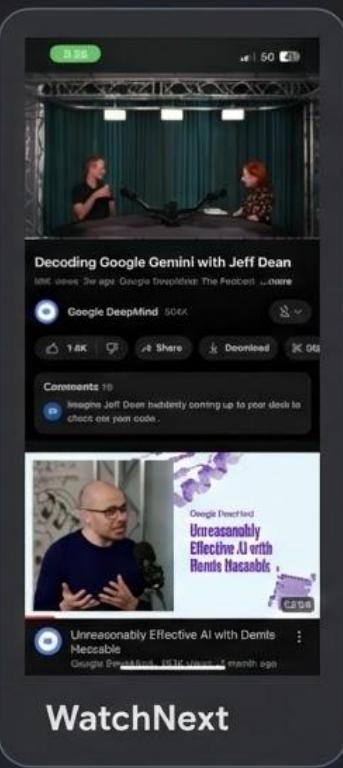
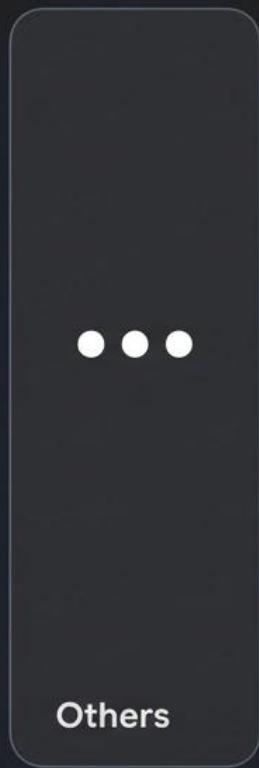
Deep Learning Emergence

Advanced Representation

Generative AI Era

Google

Recommendations at YouTube



Home

WatchNext

Shorts

Search

Others

Personalized Recommendation

Context

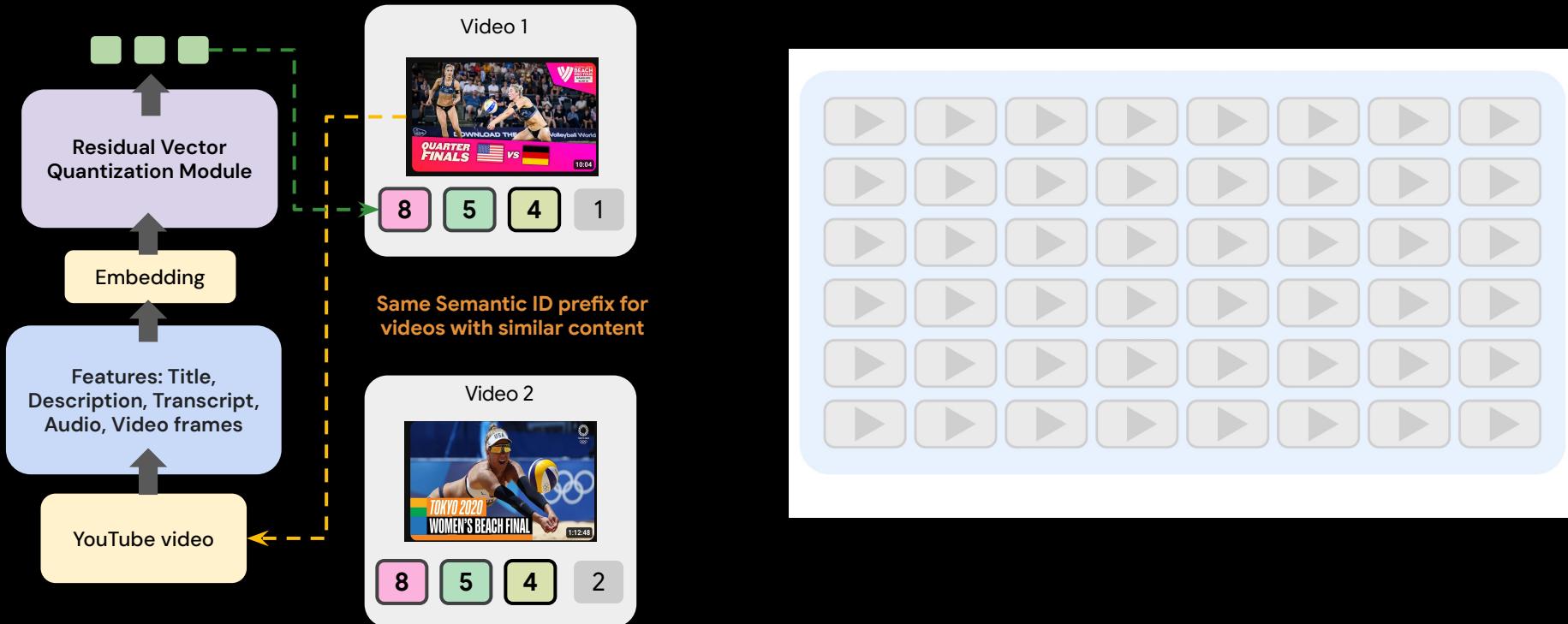
Recs

Item/Corpus Representation Landscape

Item Representation	Memorization	Generalization	Feature storage Cost
Head item embeddings + OOV vocab	✓ Excellent performance for popular items	✗ Poor generalization to tail items	Low
Atomic IDs w/ Randomized hashing (random collisions)	✓ Excellent performance for popular items	✗ Shared embeddings help, but no guarantees due to random collisions	Low
Content Embeddings	✗ Poor memorization*	✓ Generalization from content	High (for user history features)
Semantic IDs	✓ Excellent performance for popular items	✓ Generalization from semantically meaningful collisions	Low

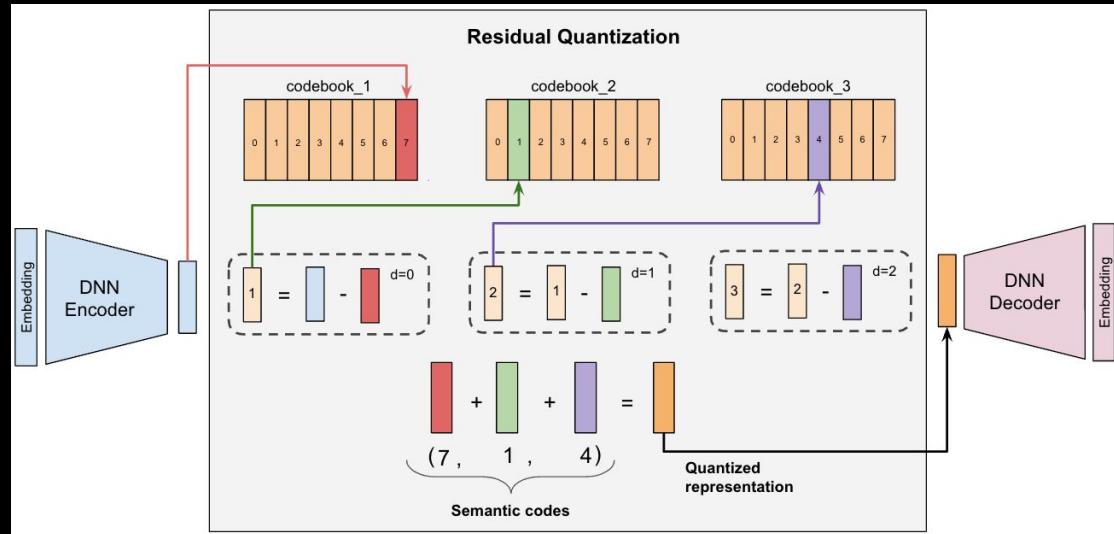
*Memorization with content embeddings could be achieved at the cost of increasing dense parameters.

Represent Corpus: Atomic IDs vs Hierarchical Semantic IDs



Generating Item Semantic IDs with RQ-VAE

- Train a Residual Quantization VAE (RQ-VAE) with video content embeddings.
- The resultant Semantic IDs for item content embeddings.



Better Generalization with Semantic IDs. (RecSys 2024)
RecSys with Generative Retrieval (NeurIPS 23)

Semantic IDs in YouTube LEMs

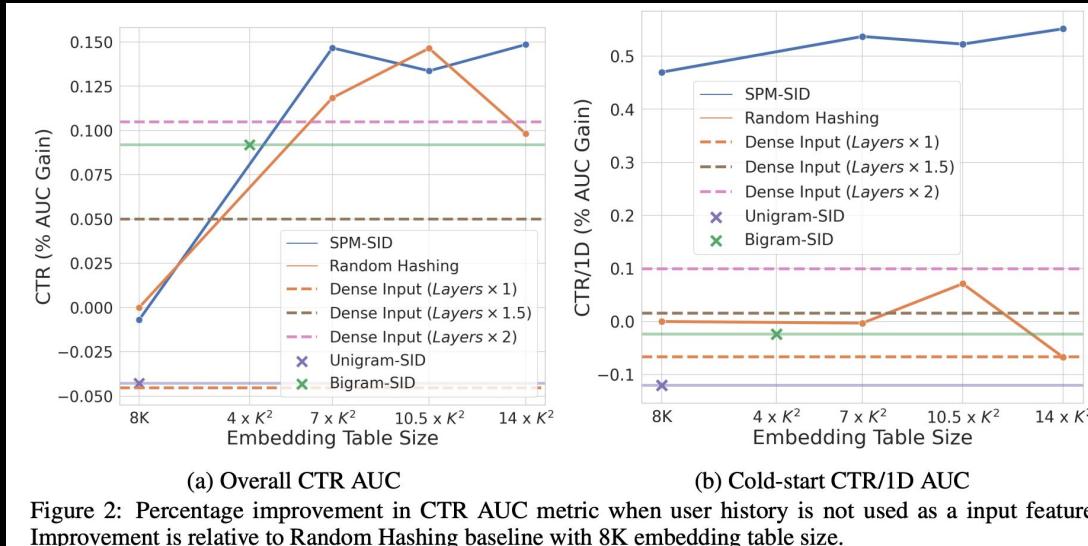
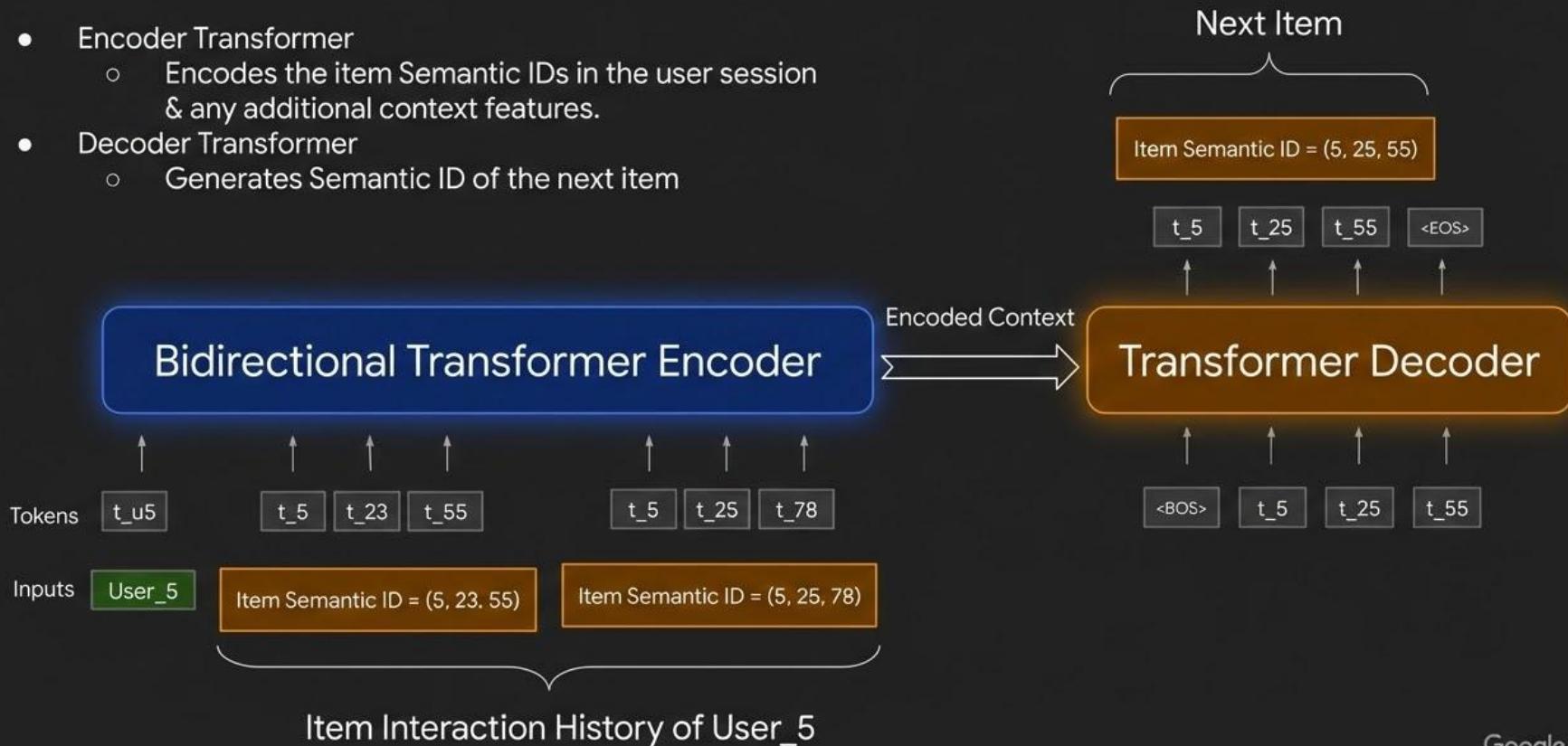


Figure 2: Percentage improvement in CTR AUC metric when user history is not used as a input feature. Improvement is relative to Random Hashing baseline with 8K embedding table size.

Significant impact in YouTube Production Large Embedding Models (LEMs) for improving generalization

RecSys with Generative Retrieval (TIGER NeurIPS 23)

- Encoder Transformer
 - Encodes the item Semantic IDs in the user session & any additional context features.
- Decoder Transformer
 - Generates Semantic ID of the next item

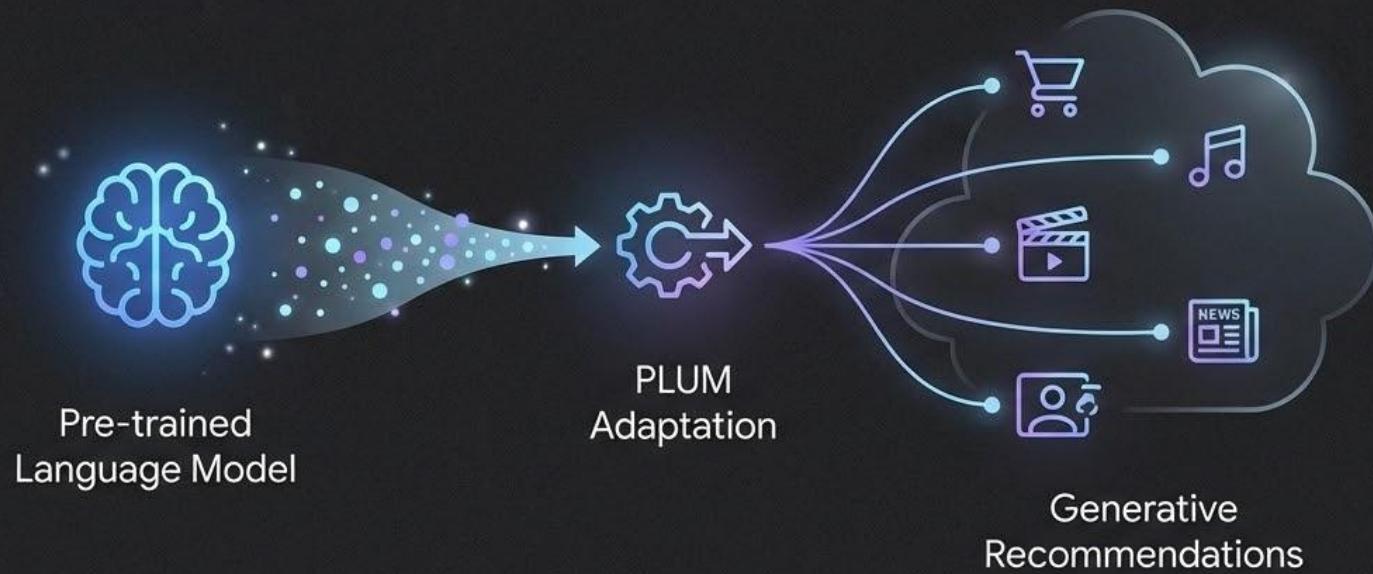


Results on public benchmark: Amazon Dataset

Performance on the sequential recommendation task on public recommendation benchmarks.

Methods	Sports and Outdoors				Beauty				Toys and Games				
	Recall @5	NDCG @5	Recall @10	NDCG @10	Recall @5	NDCG @5	Recall @10	NDCG @10	Recall @5	NDCG @5	Recall @10	NDCG @10	
Prior Methods	Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141
	HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277
	GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084
	BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099
	FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189
	SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374
	S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376
Generative Retrieval [Ours]		0.0264	0.0181	0.0400	0.0225	0.0454	0.0321	0.0648	0.0384	0.0521	0.0371	0.0712	0.0432
		+5.22%	+12.55%	+3.90%	+10.29%	+17.31%	+29.04%	+0.15%	+17.43%	+12.53%	+21.24%	+1.71%	+14.97%

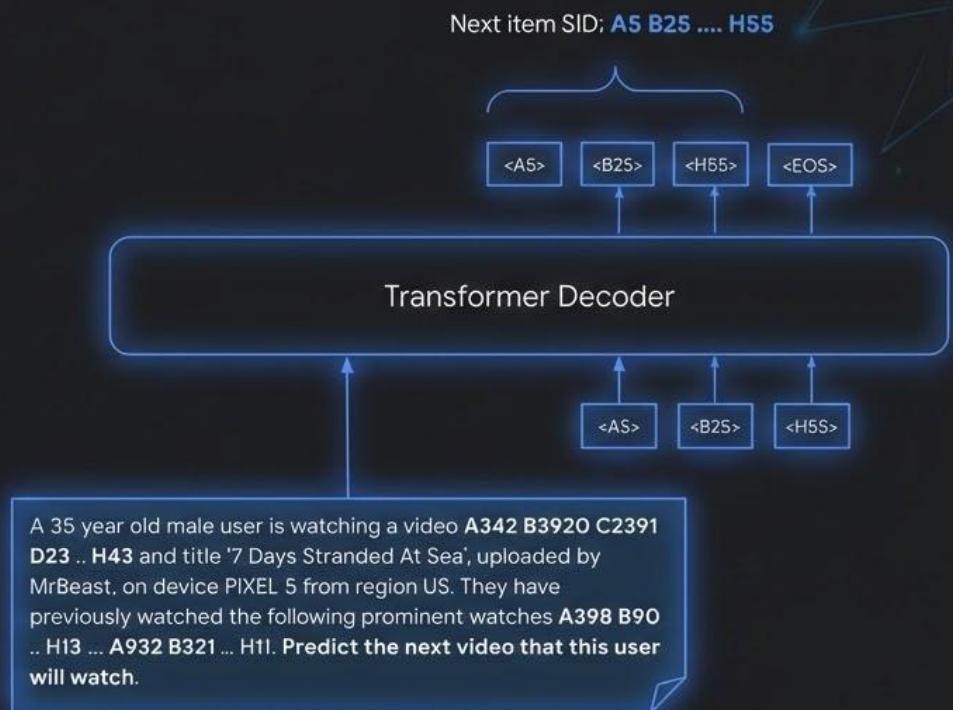
PLUM: Adapting Pre-trained Language Models for Industrial-scale Generative Recommendations



New Paradigm for Industrial Recs: GenRetrieval

LLM Decoder as an implicit index with Semantic IDs:

- Modeling with hierarchical output space represented by SIDs without negative sampling.
- Enhanced user-item interactions.
- Controllable diversity via flexible decoding strategies.



High-level Recipe: LLM x RecSys

1. Tokenize content

Capture the essence of your content into an atomic token

Rich representation → embedding → quantization

Outcome: a new “language” for your domain

2. Adapt LLM: english <> domain language

Adapt foundation model to reason across english & new tokens

Outcome: a “bilingual” LLM across natural language & tokens

3. Prompt with user info

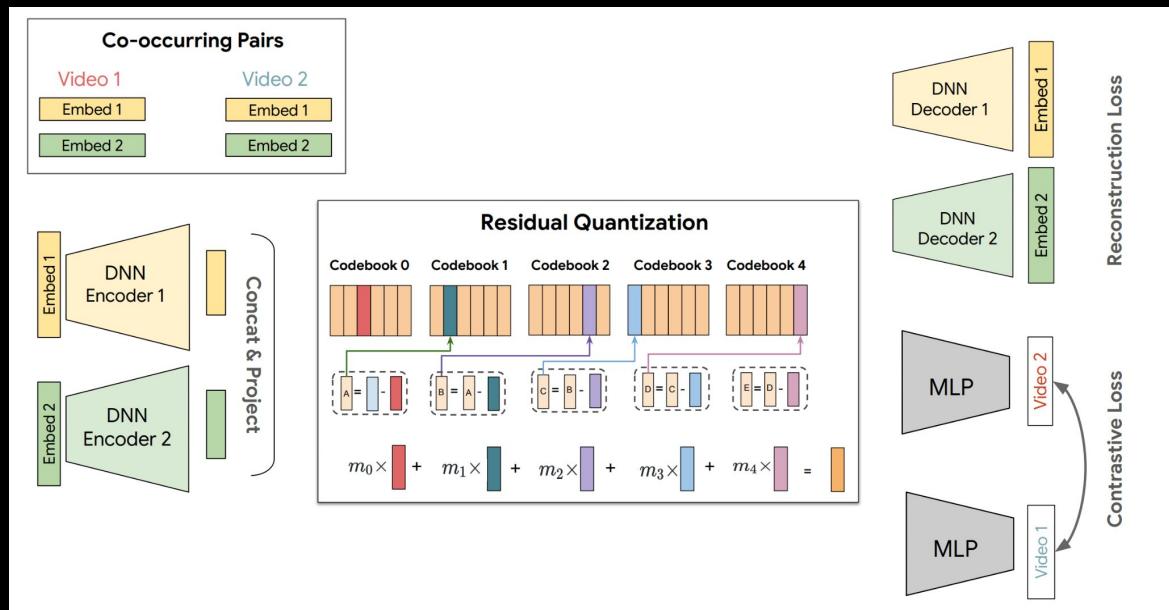
Construct prompts with user information, activity, actions

Train surface/task-specific models

Outcome: Generative recommendations with LLM

Tokenization: Semantic ID v2

- Fuse multimodal embeddings in the input.
- Incorporating engagement signals in SID training.
- Multi-resolution codebooks to reduce the search space during GenRetrieval decoding.
- Progressive masking for improving hierarchy



SID Model		SID Uniqueness	VID Recall@10
SIDv1 (Baseline)		94.0%	12.3%
SIDv2 (Ours)		96.7%	14.4%
Ablate Resolution	Multi-	94.8%	13.2%
Ablate Embedding	Multi-	96.9%	12.8%
Ablate occurrence	Co-	91.8%	12.6%

Table 4: Ablation experiments on SIDv2 changes

Adaptation: Continued Pre-training from Gemini

- Align semantic ID (SID) tokens and text tokens through domain-specific data.
- Inject recommendation knowledge into model weight, e.g. co-watch signals, user behaviors, user preferences, etc

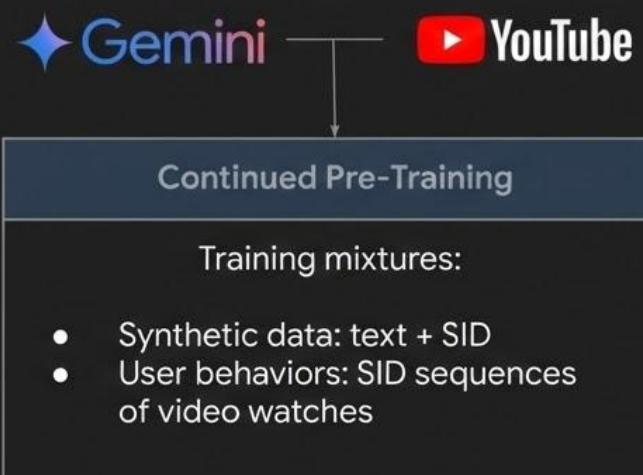


Table 1: Example schemas used in continued pre-training.

Example user behavior training data

`wh = <sid_1> <channel_name> <watch_ratio> <watch_time>
<hours_since_final_watch> <sid_2> <channel_name> ... || <sid_n>`

SID + video title

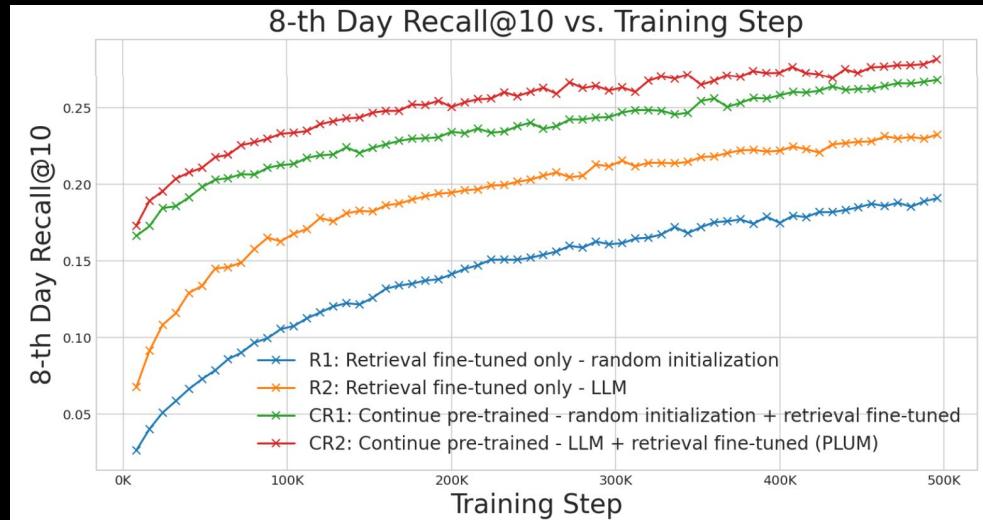
`Video <sid> has title (en): <video_title>`

SID + video topics

`The topics in video <sid> are: <topics>`

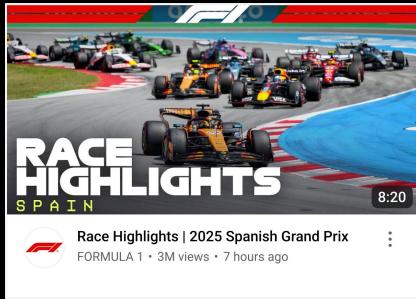
Continued Pre-training (CPT) leads to better recall

Model	Pre-trained LLM	CPT	Recall@10 (8th-day)
R1	No	No	0.19
R2	Yes	No	0.23
CR1	No	Yes	0.27
CR2	Yes	Yes	0.28



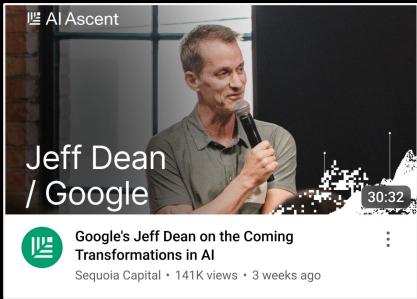
Continued Pre-training (CPT) enables reasoning across Semantic IDs

[A185 ... H201]



[T707 ... W300]

[Y212 ... K978]



[J110 ... R561]

Prompt:

Video A185 ... H201 is interesting to Tennis fans since it is about Wimbledon.

Video T707 ... W300 is interesting to F1 fans since it is about Spanish Grand Prix.

Video Y212 ... K978 is interesting to Math fans since it is about Pi.

Video J110 ... R561 is interesting to

Output:

Technology fans since it is about AI.

Generative Retrieval: Prompt LRM with demographics, seed video, watch history

User

24 yr old, Female
US, Android

Watch history

Taylor Swift - Fortnite (feat. Post Malone) (Official Music Video)
Taylor Swift

WEEK OF HALF MARATHON TRAINING | Running, Workouts, and Plan I'm Following!
Kris Hui

WOMEN'S GYMNASTICS BILES
PARIS2024
Simone Biles JUST DID THAT; anchors Team USA to gold on floor | Paris Olympics | NBC Sports
NBC Sports

Context video

WHAT A COMEBACK! | Men's 400m |
#Paris2024 highlights
Olympics

PLUM prompt

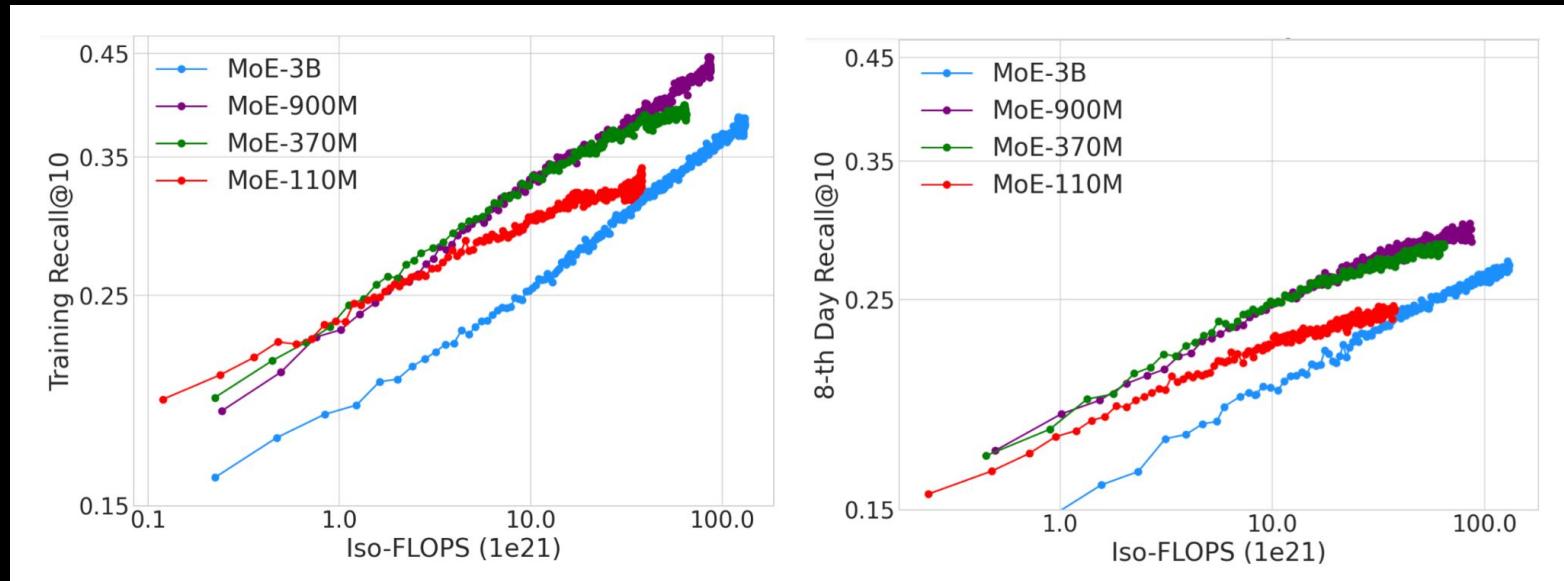
User: region US | 24 years female | device
ANDROID | origin watch next |

Context video: channel Olympics |
title WHAT A COMEBACK! | Men's 400m |
#Paris2024 highlights | SemanticID_1

Watch history:

SID 1 Taylor Swift 100% 260.00s
SID 2 Kris Hui 40% 260.00s
SID_3 NBC Sports 100% 320.00s

Scaling study with Gemini 1.5 small models



Strong Power-Law relationship b/w compute and Recall@K

PLUM Improves Recs Quality

Table 2: Comparison of recommendation quality: Each number is a ratio, dividing the metric for PLUM by that of LEM.

Metric	LFV	Shorts
Effective Vocab Size	2.60x	13.24x
CTR	1.42x	1.33x
WT/View	0.72x	1.13x
WF/View	1.32x	1.03x

PLUM is powerful, but is expensive to serve

Strengths

Learns quickly

Training data efficient: less data needed to reach prod performance

Handles toughest recs

Complex recs tasks when we know least about users

Can we serve PLUM offline?

Limitations

Expensive

Serving costs can be too large

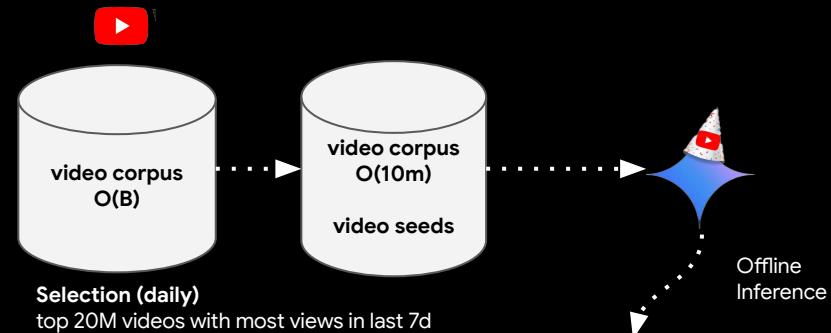
PLUM Offline for Efficient Serving

Goal: build offline video → recommendations table

seed video A	[candidate A1, candidate A2, ... , candidate A80]
seed video B	[candidate B1, candidate B2, ... , candidate B80]
seed video Z	[candidate Z1, candidate Z2, ... , candidate Z80]

Unpersonalized prompt

```
language {seed_lang} | duration  
{video_length} | age {video_age} | title  
{title} | channel {uploader} | {seed_sid}
```



Offline Video Recs Table	
A	CA1, CA2, CA3, ...
B	CB1, CB2, CB3, ...
...	...

Seed video
lookup

User watches
video

Recommendations
served

Thank you!

Thoughts? Reach me at nikhilmehtha.dce@gmail.com